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Abstract 
A design of a lens module - including a liquid lens based auto 

focus - for 3MPixels 1/3" format sensors will be presented and 
critically analyzed.  The design has been optimized for the state of 
the art liquid lens technology, associated with glass and aspheric 
plastic lenses, and for compactness requirement of the mobile 
phone application.  Detailed optical simulations results will be 
presented in both object and image spaces.   

The module optics exhibits an overall thickness of 6.6mm 
including the 3mm aperture liquid lens based on electrowetting, 
enabling a focusing range of 100mm-infinity with f# 2.8 and view 
angle 66°.   

Experiments using commercially available fixed optics will 
also be reported and demonstrated.  Advantages and limitations of 
this new auto-focus technology will be discussed, as well as future 
trends like MicroZoom concepts without moving parts.  

Introduction 
Several technologies of active lenses using liquids or liquid 

crystals have been developed.  Some of them use deformable 
liquid chambers which are pressurized using external pumps [1-5].  
Among these electrowetting actuated liquid lenses [7] have critical 
intrinsic advantages, combining large optical response as well as 
high optical quality.  

Liquid lenses based on electrowetting are a uniquely good 
solution for miniature optical systems, like auto-focus or zooms 
for mobile imaging. When an optical lens has a diameter of a few 
millimeters, the electrowetting have basic advantages over other 
solutions to make active optic.  MEMS technologies are especially 
suitable in the 10-120 µm size domain, but they are expensive, 
limited by the basic cost of processed silicon wafers.  Also MEMS 
still have to prove their ability to overcome serious difficulties in 
packaging, resulting in reliability failures.  On the contrary, for 
large size optical systems (diameters more than 15mm) the already 
established solutions in the camera industry have benefited from 
decades of development.  Nevertheless these are motorized 
solutions where solid friction and ageing limits severely impact 
their use in mobile applications. 

In this paper we present an optical design and experimental 
results demonstrating the possibility of making auto-focus camera 
using 3Mpixels CMOS or CCD sensors, in an ultra-compact 
overall size.  The design associates a state of the art electrowetting 
liquid lens associated with 1 glass and 3 aspheric plastic lenses.  
The result is a 3Mpixel imager, f/2.8, 66° diagonal view angle, 
with overall excellent optical performances somewhat superior to 
the existing optics.  In addition this will benefit of intrinsic 

advantages of the liquid lens technology (low power consumption, 
excellent reliability, fast response, easy integration). 

The liquid lenses have been recently industrialized and 
qualified for mobile environment, which open the way to the kind 
of optical design we are presenting in this paper to become real 
systems. 

Liquid lens Technology 
 
The principle of an electrowetting liquid lens has been 

described by several groups in the recent past.  Our particular 
realization is described in figure 1.  Two liquids are embedded 
inside a transparent cell, these two liquids having the same density 
but different indices of refractions.  One of the liquid is a 
conductor and the other is insulator.  Electrowetting is used as a 
way to change the curvature radius of the liquid-liquid interface 
inside the liquid lens:  a conical electrode is covered with an 
insulating layer.  When voltage is applied between the conical 
electrode and the conducting liquid, the liquid-liquid interface 
glides along the conical surface while staying always centered on 
the optical axis [6].  

      
Figure 1:  principle layout of the electrowetting liquid lens 

The practical realization of this liquid lens has been made by 
Varioptic as ARCTIC 320 design, which incorporates a pair of 
liquids which have an index step of approximately 0,1.  This 
design reveals quite good performances for the liquid lens, as 
shown on figure 2.  Figure 2 shows the optical power introduced 
by the liquid-liquid interface as a function of the voltage.  The 
optical power is defined as ∆n/R, where ∆n is the index step and R 
is the radius of curvature of the liquid-liquid interface.  The optical 
power is equal to 1/f, where f is the effective focal length in the 
air, which is easily measured as the Arctic 320.  One observes that 
the power range is quite large, of the order of 20 dioptries over 0-
60V driving voltage. 

 



 

 

 
Figure 2:  response curve of Arctic 320 lens, including WFE measurements 
with a best fit model(Line), Square are measurement data on a typical lens 
and  + --- WFErms in micron. A typical distribution of WFE is also given. 

The curve on figure 2 shows both upward and downward 
driving ramps, exhibiting almost no hysteresis.  The optical quality 
of the lens is also shown on figure 2 as the wave front error (WFE 
rms) as a function of voltage.  This curve also defines the 
maximum WFE for a given lens.  The inset shows a typical 
histogram of the maximum WFE when a statistical batch of lenses 
is produced (90 lenses batch).  This inset reveals a very good 
overall optical quality of lenses, maintained statistically.   

Optical design 
 
The design layout is given in figure 3, the design is highly 

compact, 6.6 mm from the front lens to the sensor plane.  

 
Figure 3. 3Mega pixel lens layaout 

The non-telecentricity angle is smaller than 23 degree over 
the full FOV. The distortion is smaller than 3% and the field 
curvature over the full spectral range is smaller than +/- 70 
microns as shown on figure 4. 

The relative illumination is well over the common 
requirement for CMOS sensor and is given on figure 4. 

The MTF at 80, 100,110 lp/mm are given curves for an object 
located at infinity is given on figure 5. The MTF curves for an 
object located at 120 mm from the sensor are given on figure 6. 

 

  
Figure 4. Field of curvature and distortion; Relative illumination 

 

 
Figure 5. Polychromatic MTF , Object at infinity 

 
Figure 6 .Polychromatic  MTF, object at 120 mm distance 

Prototype description and results 
 The prototype that we demonstrated has been built up 

from a commercially available fixed optic from Sunex (USA) DSL 
872 and a Varioptic lens Artic320 mounted on a 2 Mega pixels 
CMOS sensor. The Varioptic lens has been mounted on the Sunex 
lens front stop aperture. 

The embodiment of the complete lens module has been 
designed by Sunex is sketched on figure 7. The lens has an 
effective focal length of 4.8mm, open at F/2.8, a diagonal field of 
view of 62deg.  
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Figure 7. Mechanical overview of the prototype 

The expected MTF (@ 25, 50,75, 100 pl/mm) of the 
compltete lens module at different object distances of  400 and 200 
mm are presented on figure 8 to Figure 9. 

 
Figure 8. Polychromatic MTF at 400 mm object distance 

 
Figure 9. Polychromatic MTF at 200 mm object distance 

A picture of a flower located at about 100mm from the lens is 
shown in on figure 10 to demonstrate high image quality image 
obtained with this prototype. 

Discussion 
We demonstrated that the electrowetting technology can very 

easily and at low design cost enable a high quality fixed focus lens 
system in a valuable auto-focus system by simply adding the 
Varioptic lens on top the fixed lens.   

Adding a liquid lens on top of a fixed lens system without re-
optimizing of the complete system has some limitation (bulky 
assembly, not optimized optical quality). The compactness can be 
improved by placing the liquid lens in between fixed lens as 
presented in the theoretical design. Moreover the liquid lens, by 
changing its liquid interface curvature, is basically introducing a 
Petzval variation resulting in filed curvature at very close distance 
and some residual astigmatism.  

This effect could be drastically reduced by well balancing the 
optical design optimization. Nevertheless this effect of field of 
curvature may not be so critical especially in the object space.  

 

 

 

 

 
Figure 10. Picture at far distance and at 50 mm object distance taken the 
prototype. 

Common engineering practices in the imaging application 
push to match the lens system resolution to the sensor resolution. 
The lens performances are then usually specified at the sensor 
resolution limit. Nevertheless, this requirement does not need to be 
completely achieved on the full range of focus variation to insure a 
good image quality feeling.  

When an object is moved closer to the imager system, its 
frequency content do not change, but the intrinsic resolution of the 
imager will increase as shown on figure 11.  

All the simulation presented hereafter have been computed 
for a F/2.8, effective focal length of 4.6mm and a residual WFE of 
0.15 lambda of the fixed lens, a 3 mega pixel resolution sensor 
(1/3 inch sensor format) and a minimum MTF limit of 30%. Those 
simulations are based on the formula (1) (reference [8]):  

MTF (η, WFE) = 2/3.1415 x (acos(η) - η x sqrt((1 -�η)^2)) x 

(1 – (WFE/0.18)^2 x ( 1- 4 x (η - 0.5)^2) (1) 
 
Where: η Tis the normalized frequencyT, =υ/υc where υc = 

1/λN, TalwaysT 0<η<1; λ  Tis the wavelength in mm; N is the F 



 

 

umber of the optical system FN = F/D;  TF is the effective focal 
length; D is the diameter of the exit pupil; WFErms is the 
WFErms of the sytem in waves. 

 
Figure 11. resolution in the object plane of fixed lens 

From those curves we can see that without auto-focus the imager 
system will basically be limited by the sensor resolution from 
infinity to 500-1000 mm depending of the sensor resolution and 
without refocusing, it is basically impossible to have a better 
resolution than 100 dpi.  

Obviously with a refocusing system this resolution can be 
achieved. With a liquid lens of a 10 to 15 dioptries range, taking 
into account the intrinsic actual optical quality of the liquid lens 
(~0.2 lambda on the useful aperture) figure 12 shows that the 
system is able to make an image with a resolution better than 100 
dpi from a position of 100 mm to 200 mm range, and then make 
focus adjustment from 100 to infinity.  

We think that the liquid lens technology can be used to enable 
auto-focus for imager system going up to a 5 mega pixel resolution 
if the intrinsic optical quality is improved from a WFE RMS of 0.2 
lambda to a WFE RMS better than 0.1 lambda. The figure 13 
gives the optical quality improvement roadmap. 

 
 

 
Figure 12. Resolution in the object plane using a liquid lens as the focus 
device. 

 
Figure 13 Optical quality road map  

Conclusion 
We demonstrated the feasibility of an ultra-compact, high 

quality refocusable lens system using liquid lens technology for a 3 
Mega pixels sensor.  This technology is particularly well adapted 
for imager in mobile application. Based on this analysis, we started 
to work on a micro zoom concept based on the electrowetting 
technology. 
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